(z^2+5)-3(7+z)=2

Simple and best practice solution for (z^2+5)-3(7+z)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (z^2+5)-3(7+z)=2 equation:



(z^2+5)-3(7+z)=2
We move all terms to the left:
(z^2+5)-3(7+z)-(2)=0
We add all the numbers together, and all the variables
(z^2+5)-3(z+7)-2=0
We multiply parentheses
(z^2+5)-3z-21-2=0
We get rid of parentheses
z^2-3z+5-21-2=0
We add all the numbers together, and all the variables
z^2-3z-18=0
a = 1; b = -3; c = -18;
Δ = b2-4ac
Δ = -32-4·1·(-18)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-9}{2*1}=\frac{-6}{2} =-3 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+9}{2*1}=\frac{12}{2} =6 $

See similar equations:

| 4/5d=400 | | 1/6x=-18 | | 31v^2+42v=0 | | -7=-5y+4(-y+9)-7(7+3y | | (y^2+4)-6(7+y)=-22 | | 2n^2+21n=0 | | F(x)=-3x^2+9x | | -7m-4=1 | | (X^2+7)-3(9+x)=-2 | | -8+5x+12=12x-10 | | 10k+5=45 | | 3-5(2x+3)=8 | | 2(3r-4)=3r-1 | | 5n=-390 | | 5/7b=40 | | 4+1x=72 | | 4x/x^2=7 | | x-7=6+2 | | 3x-8=16-5× | | 6+2s=s | | 3x-7-5x+10=19 | | 9x-8=-3x+40 | | 5.6#w=0.7 | | 39q^2-44q=0 | | 9y^2-8y+1=3y+1 | | 3w^2+43w+14=0 | | 34=3(u+4)+8u | | 3(4n+7)=-3 | | 2n^2-29n+14=0 | | u=2u^2-6 | | 3x+1/2=2 | | R=289x-x^2 |

Equations solver categories